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at a criticd level. Part 1 

By S. N. B R O W N  AND K. STEWARTSON 
Department of Mathematics, University College London, London W.C. 1 

(Received 2 August 1979 and in revised form 6 February 1980) 

I n  this paper we examine the nonlinear interaction of a forced internal gravity wave 
in a stratified fluid with its critical level. The representative Richardson number J 
is taken to be large and the undisturbed state consists of a hyperbolic-tangent velocity 
profile and an almost constant density gradient. It is assumed that a t  large values of a 
non-dimensional time t the flow outside the critical layer is steady, consisting of the 
mean shear together with a disturbance periodic in x that  corresponds to  the single 
harmonic of the incident wave of small amplitude 6. The requirements of a match 
across the critical layer lead to a reflected wave and a transmitted wave both of whose 
amplitudes are O(ee-"") when I 6 t < 6-8, where v = ( J - 3 ) ) .  For v $ I the layer 
therefore acts as a wave absorber, and the purpose of this investigation is to ascertain 
whether this property persists on an even longer time scale. At times t = O(e-3) the 
layer has thickness O ( d )  and the first few terms of an expansion in powers of 6% show 
that higher harmonics are forced on the outer flow, and the reflexion and transmission 
coefficients develop with time. The leading-order correction to  these coefficients is 
calculated explicitly; that  to  the transmission coefficient is again exponentially small 
in v though that to  the reflexion coefficient is O(v-l). The reflexion coefficient is there- 
fore increasing and the critical layer begins to  restore wave energy to  the outer flow. 
Owing t o  the complexity of the calculation higher-order corrections are not obtained 
here, but the results presented are in agreement with predictions of earlier workers 
that the layer acts as an absorber and a reflector but not, as a transmitter. 

1. Introduction 
It is well known that an internal gravity wave, propagating through a stratified 

shear flow, develops singular characteristics a t  the critical level where its phase speed 
is equal to  the mean horizontal velocity of the undisturbed fluid. The phenomenon 
is associated by dynamical meteorologists with the notion of energy trapping by the 
troposphere and by oceanographers with the confining of topographically generated 
disturbances to  the lower region of tihe ocean and of wind-generated disturbances to  
the upper region. Important contributions to  the theoretical understanding of the 
structure of the flow near the critical layer were made in papers by Bretherton ( 1  966) 
and Booker & Bretherton ( 1  967) in which linear aspects were considered. Bretherton 
showed that when the Richardson number is arbitrarily large a wave packet moving 
with the local group velocity does not reach its critical level in a finite time and so is 
neither transmitted nor reflected but is absorbed. Further details are given by 
Grimshaw (1975) and Hartman (1975). Booker & Bretherton (1967) solved an initial- 
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value problem for a single sinusoidal component forced at the lower boundary and 
found that the amplitude of the upward-propagating wave is reduced by a factor 
proportional to exp { - n(J - a)#>, J being a representative Richardson number. 
Presumably the momentum flux of the wave is absorbed at  the critical layer and a 
corresponding force exerted on the mean flow. 

Several authors (including Booker and Bretherton) have pointed out that in the 
absence of wave dissipation the nonlinear terms must become important in the 
critical layer after a sufficiently long time while still explicitly negligible elsewhere 
in the flow field. Our aim in the current work is to study the effect of this nonlinearity 
of the critical layer on the absorption and reflexion of an internal gravity wave main- 
tained at an infinite distance above its critical layer. Our starting point is a linear 
quasi-steady state in which the motion in most of the flow field is steady, the time 
dependence being confined to the critical layer. The shear profile is a hyperbolic 
tangent and the density gradient is essentially constant. The Boussinesq approximation 
is applied. It is assumed that the quasi-steady state will establish itself when the 
effect of some prescribed initial condition has died out. The Richardson number J 
is greater than unity and this linear solution is in accord with the theory of Booker 
& Bretherton (1967) with both reflexion and transmission coefficients having a factor 
exp { - r ( J  - t)”, and this is very small even for moderate sized J .  However this 
state cannot persist because the velocity and temperature in the critical layer are 
increasing without limit. At longer times the previously neglected nonlinear terms 
take effect and we wish to examine the reaction of the critical layer to  them and in 
particular their effect on the reflexion and transmission coefficients. The method of 
attack is the same as was outlined in the Rossby wave problem discussed by Stewartson 
(1978) and used by the present authors (Brown & Stewartson 1978) to develop an 
analysis for free oscillations of a marginally stable flow with J = 14. The former paper 
consisted of an analytical solution of a special case of the problem treated numerically 
by Warn & Warn (1976,1978) and by BBland (1976), all of whom, following Dickinson 
( 1970), made use of the property that the thickness of the critical layer is proportional 
to t - I .  The paper by Brown & Stewartson (1 978) will subsequently be referred to as I. 
In I an expansion in the critical layer was formed in powers of r (=  d t ) ,  where E was 
the amplitude of the free oscillation and t the time. Higher harmonics are forced on 
the outer flow and the calculation was taken to the point where the second harmonic 
first appeared, and a subsequent mismatch between the outer flow and the critical 
layer led to a Stuart-Landau type equation for the amplitude of the fundamental 
harmonic. In the present problem a similar expansion is formulated with E now the 
amplitude of the forced incident wave, though because of its complexity the calculation 
is not taken so far. The appropriate time is again r = d t  and, as identified by Maslowe 
(1972), the thickness of the critical layer is Ole%). The chief result is the correction to 
tihe first harmonic when J 9 1 which leads to a correction O(r3+2iv), where v = ( J  - &)*, 
to the reflexion coefficient and an 0(73) correction to the transmission coefficient. As 
a function of v the transmission coefficient is again O(e-l‘”). However the correction to 
the reflexion coefficient is O(v-’), indicating a probable increase of amplitude of the 
reflected wave as time goes on. That the transmission coefficient will exhibit 
similar behaviour a t  later stages of the expansion will be demonstrated in a sub- 
sequent study. To the order considered here, there is no transfer of momentum flux 
to the mean shear, a phenomenon predicted by many earlier workers, but no doubt it 
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will occur a t  a later stage of the expansion procedure. The present work is capable of 
providing further terms in powers of v-1 and indeed may be extended to general 
values of J .  The Boussinesq approximation is made but this is for simplicity rather 
than because it is fundamental. The density profile is chosen so that there is an 
exact analytic solution to the linear problem for all J and while this is not necessary 
it does help to give confidence that the asymptotic form i s  ipdeed correct for v 9 1. 
The results are expected to be representative of a large class of similar problems when 
a wave is forced in a stratified shear flow not only at infinity but also on a finite boun- 
dary. If, however, terms of higher order in i- are required the present approach would 
seem to involve an unreasonable amount of analysis while, if terms of higher order 
in 6 are required, nonlinear effects in the remainder of the flow field, i.e. outside the 
critical layer, must be taken into account. 

There have been previous, mainly numerical, nonlinear studies of internal gravity 
waves (Breeding 1971; Klemp & Lilly 1978; Fritts 1978, 1979) and of their inter- 
action with a critical level. Considerable difficulties were experienced by these authors 
in obtaining adequate resolution of the critical layer. This is one of the justifications 
for the present analytica.1 approach, limited though its results are. Our findings are 
broadly in agreement with those of these numerical workers, to the extent that they 
all find some evidence of reflexion and little of transmission. 

2. The basic equations 
The situation is similar to, but not identical with, that considered in I. We again 

consider an inviscid shear layer separating two parallel streams of fluid in motion, the 
velocity in each stream being uniform but different. However since these streams are 
to be capable of sustaining plane waves the density gradients must be non-zero in 
each stream. We choose orthogonal Cartesian axes Ox*y* with origin in the centre of 
the shear layer, Ox* parallel to the direction of the two streams, and 0 moving along 
the x* axis with their mean velocity. The non-uniform densities of the streams mean 
that rather more care is required in justifying the use of the Oberbeck-Boussinesq 
approximation. We again take the equation of state to be linear of the form 

p* = p${ l  -B*T,*(T*/T,* - I)}, (2- 1 )  

where an asterisk denotes a physical variable, p*, T* are the density and temperature, 
p* is the coefficient of volume expansion, and p$, T$ denote a constant reference 
density and temperature. Then Mihaljan (1962) has shown that if 

p*T$ < 1 (2.2) 

the governing equations may be taken as 

divq* = 0, (2.3) 

' p *  + p * g * ( ~ *  - T,*) vY*, t*+(q* .V)q* = -- a* 
Po* 

aT* 
-+q*.VT+ = 0. 
at* 

19-2 
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Here q* is the velocity, t* the time, p* the pressure and g* the acceleration due to 
gravity. 

We now define the velocity difference between the two streams to be ?V*, choose 
a reference length L* and write 

x = x*/L*, y = y*/L*, t = t*V*/L*, (2.6) 

q*/v* = U(y)Vx+Nx,y,t) ,  (2.7) 

P*/Po* = l+B*rr ,*R(Y)+€P(X,Y,t ) .  (2.8) 

In (2.7), (2.8) the small positive number e will layer be identified with the amplitude 
of the imposed incoming plane wave, and U(y), R(y) are the undisturbed non-dimen- 
sional velocity and density of the shear layer. Then if the non-dimensional temperature 
perturbation is sT(x, y, t )  the equation of state (2.1) becomes 

p = -P*T,*T, 
and (2.3) to (2.5) lead to 

Here $(x, y, t )  is the perturbation stream function with 

(2.10) 

(2.11) 

(2.12) 

and (2.13) 

is the Richardson number. 
An analytic solution of the linear equations is possible only for certain choices of 

the properties of the shear layer and in order to achieve this and to simplify the non- 
linear study we take 

(2.14) 

Then both streams have the same constant density gradient and the Oberbeck- 
Boussinesq approximation is formally justified by condition (2.2). A further comment 
on the choice of the density profile in (2.14) will be made in $4. When J is large, the 
situation of most interest in later sections, the density gradient is essentially constant 
throughout the flow. 

2 
R'(y) = - 1 + -sech2y tanh2 y. 

J U(y) = tanh y, 

3. Propagation directions of plane waves far from the critical layer 
When lyl is large the velocity and density profiles lead to V(y) = sgny and 

R'(y) = - 1, which are both constant. The linearized forms of (2.10), (2.11) reduce to 
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which has plane wave solutions of the form 

$ ei(ax+mu-ot) (3.2) 

(3.3) 

where a, m, w are constants satisfying 

(a sgn y - w ) ~  = Ja2/(a2 + m2). 

Outside the critical layer we envisage a quasi-steady disturbance in which for 
y > 0 there is a forced wave of the type (3.2) but with w = 0. The energy of the wave 
is partly absorbed by the critical layer, and is partly reflected and transmitted as 
waves of the same type except that the amplitudes may now depend algebraically 
on t .  The appropriate conditions on a, m for such waves can be ascertained by studying 
an initial-value problem and making use of the concept of group velocity. The point 
has been discussed at  length by Booker & Bretherton (1967) and we may summarize 
the results as follows: 

When am > 0 a solution of (3.1) with an exponential factor 

ei(ax-mu), a2+m2 = J (3.4) 

for y 9 1 represents a wave travelling in the direction of x increasing and y decreasing, 
and go may be regarded as a wave incident on the critical layer. We shall regard this 
wave as given. 

Again with um > 0 a solution of (3.1) with an exponential factor 

(3.5) e((ax+mu) 

for y $ 1 represents a wave travelling in the direction ofx increasing and y increasing, 
and so may be regafded as a wave reflected upwards from the critical layer. Finally a 
wave with an exponential factor 

ei(ax+my), am > 0 (3.6) 

for y 4 - 1 represents a wave travelling in the direction of x decreasing and y decreasing 
and so may be regarded as a wave transmitted below the critical layer. The purpose 
of the present paper ie to investigate the properties of the coefficients of (3.5) and (3.6) 
when the nonlinear effects of the critical layer are taken into account. The fourth 
solution, like (3.4) except that y << - 1, represents a wave incident on the critical layer 
from below and is not relevant to our studies. 

The solution of the problem when the imposed incident wave is below, rather than 
above, the critical layer, can be obtained from that discussed here on replacing x, y ,  T 
by -x, -y, -T respectively. This is because firstly (2.10), (2.11) are unaltered by 
the transformation when (2.14) is taken into account, and secondly (3.4) becomes a 
wave incident below the critical layer and (3.5), (3.6) are again reflected and trans- 
mitted waves respectively. 

4. Solution properties at finite values of y 
The main effort of our investigation is concentrated in the immediate neighbourhood 

of y = 0 where the phase velocity of the imposed disturbance is equal to the velocity 
of the basic shear flow. Since the imposed wave is steady this velocity is zero. We shall 
be considering large values of J and the dominant properties of the disturbance when 
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y =I= 0 can be computed for general values of U(y) by the method of steepest descents. 
However the reflexion and transmission coefficients involve powers of e-vn, v = (J - ))* 
that are strictly negligible in this asymptotic method, and so in order to ensure that 
no errors occur due to the omission of such terms it is convenient to have a t  our dis- 
posal a complete solution of the linearized equations in the outer part of the inter- 
action region where y = O( 1) .  It is for this reason that the special but representative 
formsfor U(y), R’(y) in (2.14) were selected. Then equations (2.10), (2.11), when linear- 
ized by setting e = 0,  have a solution in which, with C.C. denoting the complex con- 
jugate, 

The boundaiy conditions on q51 are fixed by the requirement that there is an incoming 
disturbance of prescribed amplitude when y is large and positive and only an outgoing 
disturbance when y is large and negative. This implies that, on use of the results of 
the preceding section, 

$ = eiaZdl(y) + c.c., (#; - ~3q5~) tanh2y + Jq51 = 0. (4.2) 

$l(y) M 911eimu + e--imv as y -+ 00, 

q51(y) z Y l l e - ~ m ~ ~ ~  as y +  -a, (4.3) 

where m ( > 0) = (J - a2)) and 911, Yll are the reflexion and transmission coefficients. 
We are specially interested here in the properties of these when the nonlinear evolution 
of the critical layer is taken into account. 

The general solution of (4.2) is 

q51(Y) = 4lq5ll(Y) +42q512(YL (4.4) 

dz, (4.5) 

where 
2im-1 ( -2 - f - Siv)! (- z - f + iiv)! (2- 1 - * im)!  ( - im) !  

( -2-8 - Siv)! ( -2-2 + giv)! (2- 1 + i i m ) !  ( im)! 

$ll(Y) = -&? ( - g - giv - gim)! ( - g i- giv - i im) !  ( - z - gim)! 

7rt s ag2a ( - g - giv+ gim)! ( -2  + giv+ gim)! ( --z + gim)! 
dz, (4.6) 

q = sinh JyJ, C is a contour parallel to the imaginary axis of z and passing through a 
point on the real axis in the interval (0, )). Here and henceforth i = egin and v, m are 
both positive. The function z !  is defined for complex values of z by analytic continua- 
tion from its definition for real values. When (y( is large we complete the contour to 
the left and obtain 

2-im-1 
M Y )  = - 

$ll(y) = eimluI( 1 + O(e-2lvl)), $12(y) = e--imlyl( 1 + O(e-21ul)). (4.7) 

When Jy) is small we complete the contour to  the right and obtain 

where 
$ll(Y) w CL.llIYlf+iv+PllfYl+-iv, $12(Y) M “12JYJ~+i’+P12JYJ~--iy~ (4.8) 

I (-iv- l ) !  ( - i m ) !  2im 
“11 = ( - * - *iv - i i m ) !  ( - f - aiv - i i m )  !’ 

I (iv- l ) !  ( - i m ) !  2im 
= ( - * + giv - Sim)! ( - g + giv - i i m ) !  * 

(4.9) 

For aI2, P12, it is only necessary to change the sign of m in (4.9). The relative error in 
(4.8) is O(y2) as y -+ 0. 
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In particular when J iB large for fixed tl 

v = J++o(J+)  = m, (4.10) 

and so all % 2iv, Pl1 % - i 2 t + i v e - v ~  , a12 % i 2 t - i ve -vn ,  P12 z 2 4 ” .  (4.11) 

The solution must now be completed by matching across the critical layer with 

I #l(Y) = % l + l l ( Y ) + h 2 ( Y >  if Y ’ 0, 

#dYf = 3 1  #12(Y 1 if y < o ,  
(4.12) 

The reflexion and transmission coefficients are determined by the match with the 
solution that holds in the neighbourhood of y = 0. In  the following section this solution 
is obtained and the matching completed. 

5. Linearized theory of the neighbourhood of y = 0 

It is clear from (4.8) that the assumption of a linear theory must eventually fail in 
the neighbourhood of y = 0 since the x component of velocity tends to infinity as 
y -+ 0. Consideration of an initial-value problem leads us to expect that the linear 
solution will be valid a t  any finite time for sufficiently small values of e but will break 
down as t -+ m for any given E .  A t  large values o f t  the solution in the neighbourhood 
of u = 0 satisfies 

from (2.10), (2.11) with 4 = eiaz@(y, t) + C.C. and U(y), R’(y) replaced by their leading- 
order terms in the critical layer where a/ay 9 a/ax .  The boundary condition8 for (5.1) 
are to be chosen so that Q, matches with +1 given by (4.13), (4.14) as lyl + 00 in some 
sense. The appropriate solution of (5.1) is 

where the * denotes that the finite part of the integrals is to be taken and B,, B, are 
constants so that <D matches with in (4.13), (4.14). It follows at once that the thick- 
ness of the critical layer is O(t-l) and so the matching is justified provided t is large. 
As ty -+ +m 

(5.3) Q, e&inbunyB+ivB, + &nfsvn 4 iv Y - B, 

while Q, &in+& I ylt+ivB, + e-&n-&nlyl*-ivB2 (5.4) 

as ty 3 -m. Hence by comparison with (4.13), (4.14) we have 
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B, 2&-i~~&~-#p B, 2-ive-&r-&m 

TI, z --ie-vn, 911 z -i2+-~ive--vn. (5 .6)  

These results on the transmission and reflexion coeficients are, of course, well 
known, having originally been obtained by Booker & Bretherton (1967) and by many 
authors since. The usual interpretation is that when J is large the critical layer absorbs 
the incident wave. In fact from a practical point of view J does not have to be very 
large to make the reflexion and transmission coefficients essentially zero. Not surpri- 
singly tiherefore the velocity and temperature in the critical layer rise rapidly in 
magnitude. For example at y = 0 we have from (5 .2 )  that 

when J is large so that it increases without limit with t .  The corresponding temperature 
on the centre-line is i / v  times the expression in (5.7). In  order to assess the importance 
of nonlinear effects the behaviour’of the stream function itself is of more significance; 
we have from (5 .2 )  again that 

and so - ta as t --f 00. Hence the nonlinear terms in (2 .10 ) ,  (2.11) are significant 
in the critical layer when et* N 1, and a t  these times the outer solution, where y = O( I ) ,  
is still controlled by the linear terms. We shall now investigate how the reflexion and 
transmission coeficients are modified by these terms in the critical layer. 

@ M (at)-la@py ( 5 - 8 )  

6. The nonlinear equations of the critical layer 
Since as shown in the preceding section both the horizontal component of velocity 

and the temperature become large with t the linear theory eventually fails. The time 
scale on which it does so is O(e-3) and the critical layer then has thickness O(&). If in 
(2 .10) ,  (2 .11 )  we write 

y = dy, = dW, $ = dy(x, Y,T),  T = d s ( x ,  Y,T) ,  (6.1) 

the appropriate equations are, in the limit E = 0, 

(6.2) 
a v  as a y a 3 ~  ayP a 3 ~  - + J - =  --__- 
ay2 ax aXay3 ayaxay2’ 

The initial conditions for these equations are specified by the requirement that the 
solution shall match, as r + 0, with the linearized solutions of 3 5 which we envisage 
to be the form taken for large t of the solution of an initial-value problem starting at  
t = 0. Thus 7 = O( I )  represents the next stage in the development of the flow and we 
shall find that on this time scale the outer flow, where y = 0 ( 1 ) ,  although still linear 
is no longer steady. 

When J is large we see from (5.6) that BJB, = O(e-2”n) and so the first term in 
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(5.2) is negligibb compared with the second, and in order to make the subsequent 
analysis tractable we shall retain the second only, Thus for our initial conditions for 
(6.2)) (6.3) we take 

+ C.C. 
eiax ~Y 11 Y = eiazYll(  Y ,  7 )  + c.c., S = -- Q-iv aY 

as 7 .+ 0. where 
re--iYu 

0 u*-i. 
Yll( Y , 7 )  = bf -du, (6.5) 

and b = B2~-QiY/( - 2 + i ~ ) ! .  (6.6) 

This means that when v is large 

In addition there will be matching conditions outside the critical layer which will be 
altered from its steady form given in $ 4  as the critical layer forces the intrusion of 
higher harmonics and the development of the coefficients of the first harmonic as 
functions of i-. This matching, which is straightforward, is outlined in 3 7.  

The procedure now parallels closely that of I. We develop a formal expansion of 
Y, S in powers of 7 ,  whose coefficients are functions of Y7, x, &', riU and sha,ll find the 
first few terms explicitly. 

We write 

n= - r  n= -r 

and Y,, = s,, = 0) s,, = (&-iv)-laYll/aY. (6.10) 

Also y r , n  = yr,-n,  grn = Sr,-n, (6.11) 

the complex conjugates being denoted by tildes, and where without loss of generality 
we may take r - n to be an even integer or zero. As in I each Yr7 S, is in magnitude T* 
times Y+,, S+, and is of the form 7 - 2 d r  multiplied by a function of Y7, 7iu, eiu. 

w 

On substituting (6.8), (6.9) into (6.2)) (6.3) we find that Yr,L, S,, satisfy 

($+inY)%+inJSr, = G, , (Y ,7 ) ,  (6.12) 

- + zn Y S,, - inY,, = Hrn( Y ,  7), (6.13) 

where G,,, H,, are known functions depending on the previously calculated Yp, 8, 
with 1 < p < r - 1. If S,, is eliminated between (6.12)) (6.13) then F,,, the Laplace 
transform of Y,.,, satisfies, on denoting all transforms by an overbar, 

(i7 * ) 

( s+inY)2- -  n2JFr, = (s+inY)~,,(Y,s)-inJ@.,(Y,s). (6.14) a y2 
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K,,(Yl, 8 )  (5  + inY,)-+--iU d ~ ,  

+ ~ r n ( s + i n Y ) ) - i u + ~ , n ( ~ + i n Y ) b + i u ,  (6.15) 
- 

(s + inY)J+i. 
1 

2nv 
-- 

where K,,( Y, s) has been written for the right-hand side of (6.14) and G,.,(S), D,,(s) 
are to be found by matching with the outer solution. It follows from (6.15) that as 
Y - t  --oo 

Y,,, C,,(n[ Y I  )it-iUe-iin+n + ~, , (n(  y1)3+i .e- t in+h,  (6.16) 

while as Y -+ +a 

Yrn = (C,, + I,,) (n Y)+-ivetin+*vn + ( D ,  - 4,) (n Y)*+iue*in-*un, (6.17) 

The reflexion and transmission coefficients of the outer solution where y = O(1) 
will not be affected until a non-zero I,., or 4, is obtained, at which stage the matching 
condition will be non-homogeneous. The method of performing the match is outlined 
in the following section. 

7. Development of the outer solution 
On the time scale t = O(E-8) the outer solution is linear with $ of order unity. Since 

we have retained only the leading-order terms in e in the inner region it is suEcient to 
do likewise in the outer, in which case $ will be of the form 

$ = eniax$n(y,7)+c.~., (p -da2$ , ) t anh2y+J$ ,  = 0. (7.1) 

The neglected derivative with respect to t is of relative order sf and the neglected 
correction to the mean flow forced by the critical layer turns out to be of relative order 
e*, see (8.7)) (8.8) below. The solution with n = 1 at 7 = 0 is that given in 9 4, so that 
$l(y, 0) = $l(y) and $,(y) appears in (4.4). The values of the reflexion and transmission 
coefficients at 7 = 0 appear in (5.6). As 7 increases these depend on 7 as does @,(y, 7 ) )  

this behaviour being forced by the critical layer as is the appearance of the higher 
harmonics. 

The general solution of (7 .1)  is 

@n(Y) 7 )  = An,@) $nl(Y) + An2(7)  $ n 2 ( ~ ) 9  

m, = ( J  - n2a2)*. 

(7.2) 

where $,,, $rrz may be obt.ained from ( 4 4 ,  (4.6) on replacing m by m,, where 
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The connexion between the behaviours of q5nl, $n2 for large and small Iyl may be ob- 
tained in the same manner from (4.7) to (4.9). 

The boundary conditions on $n are again fixed by the requirement that there is an 
incoming disturbance of prescribed 7-independent amplitude when y is large and 
positive, and only an outgoing disturbance if y is large and negative. On use of the 
results of 3 3 this implies that 

(7.3) 
$%(y, 7) z 9 , ( 7 )  eimnu + Snle-imnv as y .+ 03, 

@Jy,  7) M Yn(7) e--im=lsl as y +  -a, 
where m, = m. By analogy with (4.12) we now have 

If 

where grn, qa are of the form 73(+l) times a function of 7iv, 19 then gl1, Yl1 are inde- 
pendent of 7 and are given by (5.6). 

We are now in a position to match with the solution of $ 6 .  From (6.16) to (6.19) 
and (7.4), (7.5) we obtain 

grnanl + a,., Snl a,, = e-fivnt+iv e@n- 4 vn (Drn-&), 

grnPnl + S,, s,, /In2 = &vn)-iv e ~ i ~ ~ v n ( C  m + I rn ) 3 

(7.6) 

(7-7) 

for the four unknowns grn, Zn, C,.,, Drn. When r = n = 1 ,  Jll = Ill = 0 and the solu- 
tions for gll, Fll are as in (5.5). Also 

B, = ~ - f i " D , ~ ,  B, = &"Cl,. (7.10) 

When r and n are not both unity the solution of (7.6) to  (7.9) is 

(7.11) 

(7.12) 

from which Crn, D,., follow on use of (7.8), (7.9). 
In  the next section we obtain the first non-zero Irn, 4,. We find that 

I,, = J,, = 133 = J33 = 0 

but that 131, J31 are non-zero. It emerges that J31 = O(73f2-iV esYn), 131 = O ( T ~  e-BYn) with 
the result that W,, = o ( ~ ~ + ~ ~ ~ ) ,  Y31 = O ( ~ ~ e - v n )  so that the transmitted wave is still 
negligible though the reflected wave is building up from its value of order e-vn. 
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8. Explicit calculation of the second-order terms 
In  this section we evaluate Y,,, which, it emerges, has a forcing effect on the outer 

flow, and show that 122 = J22 = I,, = J,, = 0. Had 122, J,2 been non-zero a second har- 
monic would have been forced a t  this stage on the outer flow. We have extended the 
obvious definition of reflexion and transmission coefficients to include these terms 
though it couId be argued that the higher harmonics should not be regarded as re- 
flexions of the original imposed wave. The second harmonic is in fact postponed until 
the 14,, 4, stage. 

As in I we first look a t  the computation of 
v 

2,+Y20+e-2iaxY 22 (8.1) 

and S, = e2iaxSz2 + s,, -t e-2iaxL722. (8.2) 

Yp - e 2 i a x y  
2 -  

It follows from (6.2), (6.3) that  

so that, from (6.5), 

A useful expression for aL9,,/a7 is then obtained, on use of (6.10), as 

The behaviour of Y2, as I Yl --f co is most easily obtained from (8.3) and the form 

according as Y 2 0. Using this we find that  

Y,, M - 2 U 7  + 2u2/ Y + o { ~ e - ~ ~ ~ (  Y ~ ) - * + { V ) ,  

if Y > 0 and y,o z v/(rI YI) + O { ~ e - ~ ~ ~ l  Y T I - ~ + ~ ~ } ,  (8.8) 

(8.7) 

if Y < 0. Thus Y20 does not decay to zero as I Y I -+ 00 and the stream function in the 
outer region where y = O( 1)  has forced on it an x- and y-independent term that is O(6t). 
The presence of this term in the outer solution in no way invalidates the remarks made 
early in 5 7 about the relative orders of magnitude of the neglected terms in (7.1). 

From (8.4) it also follows that, when u $ 1, 

Since for a comparison with the situation when the imposed wave is below the critical 
layer we must change the sign of Y but not of ‘I?, the sign of the first of these is not 
in accord with the prediction of Ramanathan & Cess (1975) on the mean retrograde 
winds within the atmosphere of Venus. Also that of the second does not support the 
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findings of Lindzen & Rosenthal(1976) on the sharpening of the mean shear. However 
it is noted that, although broadly negative, aY,,/aY does oscillate in Y. 

To proceed further we must calculate Y,,,AS’~~. These satisfy (6.12), (6.13) with 
r = n = 2 a n d  

(8.10) 

On taking the Laplace transform it is easily verified that 
Y 

??,,(Y,s) = (8-iu) ( ~ + 2 i Y ) * - ~ ~ /  R22(Yl,s) (s+2iY1)-8+i”dI<, (8.11) 

(8.12) and 

where the neglect of the complementary functions has anticipated that 12,, J,, will be 
zero. From the absence of a term in (s + 2iY)4+iu in (8.1 I )  we see immediately that  
JZ2 = 0. Also from (8.11) we obtain 

- 5 3  

- aT,, 
S,,(Y,s) = ( + - i u ) - l -  

a Y ’  

which on substitution for H,, becomes 

This integral vanishes for exactly the same reasons as did the corresponding integral 
in I. The inner integral is 2nS(u + v + 27 - 2r2), where S is a Dirac delta function which 
vanishes except when 7 = 7,, u = v = 0, i.e. on the boundary of the hypervolume of 
integration. However the presence of the factor (7 - 7 2 ) * - i u  in the integrand implies 
that 12, = 0. 

Later we shall need Y,, which is obtained by inverting T2, in (8.11) as 

ib2 
Y -  22 - -(&-iU)!(-*+iv)! 

du dv 

x Inm exp [ - ia Y(27 - 2~~ + u + v )  - iaYl(27, + 2~~ - 27 - u - v)] dY,. (8.15) 

The third-order terms take the form 

Y,, e3iaz+ Y31 eiax + C.C. (8.16) 

with a similar expression involving S,,, S31. The terms Y,,, S,, have no effect on the 
outer flow since it can be shown by writing them down explicitly that I,, = 0 = J,,. 
The reason is the same as for the vanishing of I,,, J22, To obtain the forcing term on 
the right-hand sidezf the equation there are no mixtures of for example Yll and its 
complex conjugate Yll. Thus the delta function from the first stage of the integration 
is only non-zero on the boundary of the hypervolume of integration where other 
factors of the integrand vanish. However this does not hold for Y31, S31, which lead to 
non-zero 131, J31; we proceed to  calculate these in the following section. These quantities 
furnish the first correction to the reflexion and transmission coefficients. 
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9. The first correction of the reflexion and transmission coefficients 
J,,, whichupon use of (7.1 1),  (7.12) give W,,, F31. We 

find that 13, = O(v*e-*Yn), J3, = O(v-le*un) when v is large so that 9 3 1  = O(v-l), 
Gl = O( vg e-"n). The 7 dependence of W,, is 73+2i', and of T3, is7,. Thus the transmission 
coefficient has the same dominant dependence as its steady value (5.6) though the 
reflexion coefficient has a correction that is much larger in magnitude. 

In  this section we calculate 

The equations satisfied by Y,,, S,, are 

+iJS31= x, aM31 (k + i Y )  S,, - iY,, = H,,, (9.1) 

(9.3) 
The soIution of (9.1) for T3, is 

It is convenient to split 13,, J,, into two parts and write I,, = + 1312, J3, = J310 + J312 
and similarlywith M,,, H,,. In  (9.2), (9.3) the first bracket corresponds to the subscript 
0 and the second to the subscript 2. Thus for example 

To compute (93, 19.6) we first calculate these functions and obtain 
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- a2yZ2 a y P i l a ~ 2 2  
a Y Z  ay a y '  

(#-iu)M312- JH,,, = -2uYll-  -4u-- 

a+ ayz2 
ay ay 

(4 +iu)  M312 - JH,,, = - 2 1 , s -  - 4u- 

(9.10) 

(9.11) 

where use has been made of (8.3), (8.5) and (8.12). 
From (9.5), (9.8) we are able to write Ijl0 as the multiple integral 

and from (9.6), (9.9) we have 

Evaluation of both of these integrals is facilitated by use of the delta function. In  
both cases the innermost integral yields 2 d ( ~  - 73 + u + w - w) which is non-zero only 
at v = u + w + 7 - 73 and this point must therefore be interior to the polyhedron over 
which the remaining fivefold integral is taken. Then J310 for example reduces to 

with v = u + w + 7 - 73. The corresponding form for 1310 may be written down similarly. 
The integrals may now be performed in the order indicated and the results are 

4 n i b ( b 1 2 ~ ~ + ~ ~ ~  (-$+iu)! 
J310= 3+2iu ( $ - i u ) ( 2 i u ) !  

1 (1 - p)2ivp#+iv  

d p - $ e /  i + i V  ( i + p ) 4 + 2 i v  dp).  (9.16) 

The integrals for 1312, J312 are eightfold and are, on use of (8.15) for YZ2, 

x lom exp [ - i&( 2~~ 4 2~~ - 27, - u - v)] dYl 

x /Im exp [ - i Y(7 + 73 - 2~~ + u + v - w)]  d Y ,  (9.17) 
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x lom exp [ - i q ( 2 7 ,  + 27, - 2T3 - u - v)l dy1 
00 

x 1 exp [ - i Y(7 + 7, - 27, + u + v - w)] d Y .  (9.18) 

The two inner integrals may be evaluated immediately on use of the delta function 
to  give 

-ca 

> (9.20) 
v (u -v )  (73-71-72)f-iv (7-73)4+iv{7-T72+ +(U+@)}  

X 
(U2M1)+iV W*+i”{7, + 7, - 7, - gru + w)} 

where in both cases w = 7 - 272 + 73 + u + v. 
The inner pair of integrals is reduced to  a single integral on use of the result that  

( - g + iv)! ( - g + iv)! 
(g - iv) (2iv) ! 

2 7 2 - 7  

- - jo x”i”f(x)dx (9.21) 

and after that  it is helpful to  make the successive substitutions 

x = 2 t 2 - 2 y ,  72 = 97+t2, 73 = 97+t3, 7,  = t,-t, 

and then it is possible t o  perform the integrals with suitable choice of the order. The 
final result is 

and (9.23) 

Apart from the neglect of the term multiplying B, in ( 5 . 2 )  these results are exact 
and we now examine the form of 13,, J3$ when v i s  large. We first need the asymptotic 
behaviour of the six integrals in (9.15), (9.16), (9.22), (9.23) when v $ 1. This is 
achieved by noting that each integral is a hypergeometric function F(a,  b,  c, - 1) for 
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appropriate a, b, c and then using the differential equation satisfied by &a, b, c,  x). 
The results are 

(9.24) 

(9.25) 

1 p 2iv+l  (1 -p)i-iv iv s dP“22i”il’ 
(8 + iv)! 

( & - i v ) ! ( Z i v + l ) !  0 (l+p)%+i” 

(9.27) 

(9.28) 

($  + 3iv)! 1p2iy 1 -p)$+iY piu+223iu+% 
dp (9.29) 

(&+iv)! (2iv)!  s 0 (1 +p)B+i. 5&( 1 + 2/5)5iv+% 

A final collection of the relevant terms then gives that for large v 

(9.31) 

where use has been made of (6.6), (6.7). 
If we now return to (7 .11) ,  (7.12) we are in a, position to calculate the corrections 

g31,F31 to the reflexion and transmission coefficients. On use of (4.11) to  substitute 
for aij,Pij we obtain that, when v 9 I, 

and then from (7.8),  (7.9) 

(9.32) 

(9.33) 

(9.34) 

(9.35) 

Evaluation and discussion of these results is undertaken in the following section. 
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10. Results and discussion 
We are now in possession of the first correction to  the reflexion and transmission 

coefficients. The results are that, to 0 ( ~ 3 ) ,  from (5 .6 ) ,  (9.32), (9.33) the reflected and 
transmitted waves are of the form, when v 1, 

&?&(az+my) + c.c., re i (az-mly l )+  c.c., (10.1) 

where (10.2) 

Thus at this stage the transmitted wave is still O(e-vn) for v large and so there is again 
no transmission through the critical layer. However the coefficient of the reflected 
wave is, as a function of v, O ( ~ - ~ e ~ n )  larger a t  the O ( T ~ )  stage than a t  the O(1) stage. 
As time goes on the critical layer which when t = O(1) acted merely as an absorber 
of energy increasingly takes on the role of a reflector and returns some of the energy 
to the main region of the flow. The increase in size of the transmission coefficient is 
only O(v+). 

It is interesting to speculate on the outcome of a continuation of the calculation, 
formidable though it would be. So far our achievement is limited, being confined to the 
computation of the leading correction to the prescribed harmonic. Higher harmonics 
will be generated in the outer region of the flow but there is no second harmonic O(T%) 
because f i 2 ,  J,z happened to be zero. Similarly there is no third harmonic O ( T ~ ) .  How- 
ever, by analogy with I, there is no doubt that  a second harmonic will be generated 
a t  the O(T)) stage. There will also be corrections of order 7 6 ,  &'etc. to t,he first harmonic. 
It seems, though, that it is of dubious value to  attempt to estimate the size of the 
coefficients as functions of v when v & 1. It is the subtle interplay of the signs of iv 
that led to  J31 being O(ev") larger than 131. An illustration of this is given by the beta 
functions 

(10.4) 

the values of which are n- sech v?r and ntZQ+iv( - 4 - iv)!/( - i v ) !  respectively, so that 
their ratio is O(v- )  e-"=) when v is large. In  fact I,,,, 4, consist of multiple products of 
terms of this form. One might suspect however that later terms in the expansion will 
give a contribution to the transmission coefficient that  is not exponentially small in v 
since T31 now has a term which takes the form J31 (s + i Y)&+iv when Y is large and 
positive, where J31 = O(etun) and this could generate an O(1) contribution to  the 
transmission coefficient at the O ( P )  stage. However a separate study indicates that  
this is deferred until the 0(7l2) stage. 

We conclude by noting that a t  points of overlap our work is in agreement with 
that of previous authors. At times when the linear theory is valid the critical layer is, 
for Richardson numbers sensibly greater than 4, a wave absorber. On longer time 
scales when the nonlinear terms become important the critical layer starts to return 
energy to  the outer flow, the mechanism being the reflected wave. The calculation has 
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not been carried sufficien-tly far here to seeif-there will also be a non-negligible trane- 
mitted wave, nor have any higher harmonics been explicitly calculated though these 
will certainly occur. Both these tasks have, however, been undertaken in a subsequent 
study. 

The authors are grateful to the associate editor Dr M. E. McIntyre for material 
help with the revision of the introduction to this paper. 
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